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J. Phys. A: Math. Gen. 15 (1982) L7-Lll. Printed in Great Britain 

LElTER TO THE EDITOR 

A note on a generalisation of Weyl's theory of gravitation 

T Derelit and R W Tucker 
Department of Physics, University of Lancaster, Lancaster, UK 

Received 7 October 1981 

Abstract. A scale-invariant gravitational theory due to Bach and Weyl is generalised by the 
inclusion of space-time torsion. The difference between the arbitrary and zero torsion 
constrained variations of the Weyl action is elucidated. Conformal rescaling properties of 
the gravitational fields are discussed. A new class of classical solutions with torsion is 
presented. 

A scale-invariant theory of gravitation usually associated with the names of Bach and 
Weyl is based on the action 

where C a b  = - c b a  are the six independent Weyl curvature two-forms and * denotes 
the Hodge duality operation with respect to a Lorentz signatured metricS. The integral 
is over the space-time manifold. We recently became aware of an article by Fiedler and 
Schmming (1980), dedicated to the study of classical solutions of the theory described 
by (l), where a detailed list of references can also be found. Originally Bach considered 
a metric compatible, torsion-free connection and the same approach is adopted by 
Fiedler and Schmming. Then the field equations derived from metric component 
variations of (1) turn out to be fourth-order partial differential equations in the natural 
components of the metric tensor. Our purpose in this note is to discuss a simple 
generalisation of Bach-Weyl theory which results when the assumption of a torsion- 
free connection in (1) is relaxed. This is a natural generalisation in the light of a gauge 
approach to gravitation (Benn et a1 1980, 1982). Some new classical solutions that 
result from a modified double dual curvature condition are pointed out. 

We consider action (1) written in terms of a metric and a metric compatible but 
otherwise arbitrary connection. Then independent frame and connection variations of 
(1) yield the field equations 

respectively. Under the assumption of vanishing torsion, T" = 0, these reduce to 

f i b  h * e b a  = 0, 

fi * k a b  = 0, 

(4) 

( 5 )  

t Permanent address: Physics Department, Middle East Technical Unikersity, Ankara, Turkey. 
$ We are using the formalism of exterior differential forms. Basic definitions and conventions are presented 
separately in an Appendix. 
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where zeros indicate the use of the Christoffel connection. However, equations (4) and 
(5) are not equivalent to the fourth-order Bach-Weyl equation studied by Fiedler and 
Schmming (1980). In order to obtain the Bach-Weyl equation from a consistent 
variational principle, we impose the zero torsion condition by introducing Lagrange 
multiplier forms in the action. Thus instead of (1) we consider the S0(1,3) invariant 
action 

11 = [Cab A * Cab A, A (de" + Wab A e')]  (6)  

where A,, a = 0, 1,2 ,3 ,  are four independent Lagrange multiplier two-forms. 
Independent frame, connection and A, variations of (6) give 

Pb *Cba+iaCbcA*Cbc-Cbc A i ,  * CbcfDha=Oy (7 ) 

2 D  * c a b  ++(A, A e b - &  A e,) =o, (8) 

dea+wabAeb=O, (9 )  

respectively. Equation (9) imposes the constraint T" = 0. Equations (7) and (8) are 
now to be solved under this constraint. It is possible to solve (8) explicitly for A,: 

(10) A, = 2ib@ * e',)+ * (eb A ec ) ia  * (B * &). 

Then (10) is substituted into (7). The resulting expression, 

4A+('a+28(ib(B*(',))+ * ( e b A e C ) A 6 ( i a  *(6*&eb,))=o, (11) 

is known as the Bach-Weyl equation?. It is now clear that any torsion-free solution of 
(2) and (3) is also a solution of (1 1). But the converse need not be true in general. We 
regard (2) and (3) as a convenient generalisation of the Bach-Weyl equation in the 
presence of torsion. This point will be appreciated more if spinor matter couplings to 
the theory are examined. 

It is worth pointing out at this stage the conformal rescaling properties of the 
gravitational fields in the generalisation we are discussing. The original Bach-Weyl 
theory is invariant under local scaling of the metric, since the Weyl curvature 
two-forms written in terms of Christoffel connection are scale invariant and the action 
density four-form is constructed out of Weyl curvature two-forms and their Hodge 
duals. In the presence of arbitrary metric compatible connection, the corresponding 
Weyl curvature two-forms and hence the action (1) is still locally scale invariant 
provided the same SO(3,l)  connection is adopted for all conformally related metrics. 
That is to say, if 

(12) 

W a b  + Waba (13) 

(T"+dA / \ e a ) ,  (14) T" - * e h ( * )  

Rab +Rab. (15) 

e a  + e A ( x ) e ~  

then we require 

It follows from these scaling rules and the structure equations that 

t Equation (1 1) can be brought into the form given by Fiedler and Schmming (1980) with the aid of Bianchi 
identities and the symmetry properties of the components of tab. 
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Therefore the torsion of any particular connection can be changed by adopting a new 
metric in which the conformally related frames are orthonormal. It is possible to 
construct many other locally scale-invariant actions in our approach, some of which 
have already been investigated by Dereli and Tucker (1981). The above arguments 
concerning the difference between arbitrary and zero torsion constrained variations are 
equally applicable to these theories. It is well known that both types of variations lead 
to the same set of field equations for Einstein-Cartan theory which is described by an 
action linear in the curvatures. The distinction between the two types of variations 
appears to be significant whenever a theory (e.g. one which is described by an action 
quadratic in curvatures and/or torsions) admits ‘dynamical’ torsion, i.e. where T a  is not 
related to other degrees of freedom algebraically. 

Finally we would like to discuss some new classical solutions of the Bach-Weyl 
theory. But before that, two observations are in order. First, we note that any 
torsion-free geometry described by a vacuum Einstein metric constitutes also a solution 
of equations (2) and (3). This follows from the vacuum Einstein equations Fa = 0 and 
the double duality of the corresponding curvature two-forms. Next, all geometries 
conformally related to vacuum Einstein solutions are again solutions of (2) and (3). This 
is due to the scale invariance of action (1). In order to illustrate our discussion we now 
specialise to static, spherically symmetric field configurations. The unique vacuum 
Einstein solution described by the Schwarzschild metric together with zero torsion and 
all geometries conformally related to it are also solutions of (2) and (3). According to 
the scaling rules (12)-(15) this class of solutions, which can be characterised by Pa = 0 
and c a b  # 0, may well include some geometries with non-vanishing torsion. A distinct 
class of solutions can be constructed by considering the expression 

(16) 1 cd * ( R a b  - $hea A eb) = -%&ab (Red -$he, A e d )  

where A is an arbitrary constant and &abcd is the totally antisymmetric object with 
~ 0 1 2 3  = 1. Any geometry that satisfies the modified double dual curvature condition 
(16) may be characterised by the condition (1) Q = 2h so that Pa # 0 and (2) c a b  = 0 
provided they also satisfy ea  A DTa = 0 (Benn et al1981). Therefore these geometries 
together with all conformally related geometries form an independent class of solutions 
of (2) and (3). The spaces of constant curvature defined by 

R~~ = $hea A eb (17) 

constitute a subclass of solutions. Any torsion-free geometry that solves (16) is 
conformally flat. The Schwarzschild metric with a ‘cosmological constant k ’, 

+ r2(dd2 + sin28 d4’), 
dr2 

(1-2m/r+fkr2) 

together with the torsion two-forms 

TO = 2 112 dr A dt, T k  =O, k = 1,2 ,3 ,  2($k + h ) r  + (2m/r2) 
(1-2m/r+$kr ) 

also solves (16). We have established the existence of at least two distinct classes of 
classical solutions to equations (2) and (3). The torsion-free solutions in both classes 
also satisfy the Bach-Weyl equation (11). However, both classes include solutions with 
non-vanishing torsion. Thus we are able to conclude that there is no Birkhoff-type 



L10 let ter  to the Editor 

theorem for the gravitational theory based solely on action (1). Such distinct solutions 
must presumably be distinguished by topological considerations. 

We thank the organisers of the 2nd UK Theory Institute at St Andrews where part of 
this work was carried out. 

Appendix 

Space-time is a four-dimensional differentiable manifold with a Lorentz signatured 
metric 

g = qabeaOeb (A11 
where ?ab = diag (-+++) and ea, a = 0, 1,2,3, are the orthonormal basis one-forms. 
An independent but metric compatible connection whose S0(1,3) components are 
denoted by Wab = -Wba will be used. The structure equations 

(A21 

dWab+Wac AWCb=Rab, (A31 

T" = Tbc,at?b A e' 

b de" + W a b  A e = T", 

define, respectively, the torsion two-forms 

(A41 

and the curvature two-forms 

(A51 

P, = isba (A61 
where the interior operators io, a = 0,1,2,3,  are defined by iae = 62. The curvature 
scalar 

d &RCd,"beC A e . R ab 

The Ricci one-forms 

Q = i,P". (A71 
Then the Weyl curvature two-forms 

A metric compatible connection with torsion may be uniquely decomposed according 
to 

(A101 Wab = &ab -t Kab 
where the Christoffel connection one-forms are determined from 

dea+&abAeb=O (A1 1) 
and the equations 

Kab  heb = Ta 
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determine the contortion one-forms Kab = -Kba. Then we define the Christoffel 
curvature two-forms 

and the corresponding fia, 6 and &ab associated with the Christoffel connection. 
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